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Table 5. Coefficient K o f  the f i t  between pseudocentric distributions for  different types o f  seminvariants for  K 18JAP 

Non-centrosymmetric Centrosymmetric Non-centrosymmetric 
Seminvariant Combined K triplets triplets quartets ~1 relation 

Sequence no. of the 
best set 2 2 11 12 20 

Refined phases 6.7 3-2 1.6 8.7 3.7 
The best set of phases 19.3 8-4 3.5 7.4 7-6 
The lowest K 13.0 2-7 0-8 5.1 2-7 
The highest K 193.3 161.1 47.8 20.1 24.7 

5. Concluding remarks 

When DFM's  are used as figures of merit for the 
determination of the best trial set of phases in early 
stages of the phase determination, the description of 
the distribution profiles has to be adapted in order 
to overcome the problems with the bias of the phases 
in symbolic addition or multisolution methods. 
Therefore, in the case of symbolic addition, the distri- 
butions were calculated in two points only, as in the 
centrosymmetric case. Naturally, in this way the dis- 
tribution profiles are neglected and, as a consequence, 
the discriminating power of DFM's is not fully 
utilized. 

The significantly lower values of the coefficient of 
the fit for the refined phases, compared with those 
for pseudocentric solutions, indicate the possibility 
of obtaining better results by using the method 
ab initio, i.e. when the phases are refined directly by 
minimization of a criterion based on DFM's  as 
described by Ha~ek (1985b, c, d) without the preced- 
ing step of multisolution or symbolic addition pro- 
cedures. The main problem of this approach will be 
to find a sufficiently fast and converging algorithm. 
Also, theoretical probability distributions have to be 
used which describe the true distributions of 
seminvariants more adequately, in particular for 
quartets and quintets, where the existing formulae 
(e.g. Hauptman,  1975; Giacovazzo, 1976) are not 

sufficiently exact for the description of the profiles 
(Peschar 1987; Peschar & Schenk, 1986, 1987). 

JH thanks all members of the Laboratory for Crys- 
tallography at the University of Amsterdam for their 
cooperation and Dr K. Huml (IMC) for supporting 
this research. 
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Abstract 

Density modification techniques try to improve the 
phases of poorly resolved electron density maps given 
by isomorphous replacement by correcting the sys- 
tematic errors of the maps according to known phy- 
sical properties. The phases computed from the cor- 
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rected maps are combined with the observed moduli 
through a suitable weighting scheme. A new 
refinement strategy is proposed which considers the 
observed moduli and the moduli of the Fourier 
coefficients of the 'best'  map as isomorphous pairs, 
the Fourier transform of the known systematic errors 
being a 'heavy-atom contribution'. The lack of closure 
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486 THE ISOMORPHOUS PSEUDO-DERIVATIVE TECHNIQUE 

is assumed to have a Gaussian probability law and 
gives the basis of the weighting scheme as in a true 
single isomorphous replacement. The application of 
the technique to the multiple isomorphous replace- 
ment map of E. coli methionyl-tRNA-synthetase 
yields dramatic improvements. 

IR 
SIR 
MIR 
CSF 
IPD 
p(x) 
F(h) 
Ogg, q 

Fo 
Fc 
Emir 

E 
pw 

Notations and abbreviations 

Isomorphous replacement 
Single isomorphous replacement 
Multiple isomorphous replacement 
Classical solvent flattening 
Isomorphous pseudo-derivative 
Electron density of the cell 
Fourier transform of p(x) 
Phase of Fg.,(h) 
Observed structure factor 
Fourier transform of the modified map 
Fourier transform of the MIR 'best' map 
Lack of closure 
Mean lack of closure 
Phasing power 

Introduction 

MIR electron density maps have given the starting 
point for atomic model building of most protein struc- 
tures. However, since the efficiency of isomorphous 
replacement (IR) decreases as the molecular weight 
of the asymmetric unit increases, a number of struc- 
tures need additional techniques to improve the maps 
obtained from isomorphous replacement, prior to 
construction of an atomic model. Some molecules 
may also have a well ordered structure core with less 
ordered loops at the periphery. This is especially true 
for proteins which bind RNA; no such structure has 
at present been entirely solved. For all these reasons, 
new techniques are needed to optimize contrast and 
structure determination. 

A decisive improvement of IR phases has been 
possible with phase refinement methods based on the 
invariance of the electron density through simple 
mathematical transformations allowed by geo- 
metrical redundancies or multiplication by a mask 
defined by the molecular envelope (Bricogne, 1974, 
1976). In his theoretical paper Bricogne (1974) has 
demonstrated that when more than two copies of the 
same molecule occur in the asymmetric unit the 
phases are overdetermined, given the structure-factor 
moduli at any resolution. However, at least one 
isomorphous derivative is necessary to find the 
geometrical relationships between identical 
molecules in the asymmetric unit and to design 
molecular envelopes. In Bricogne's (1976) paper, an 
iteration process consisting in alternate steps of 
modification of the maps and combination of the 
phases from the modified maps with the observed 

moduli is presented. To this end a probabilistic treat- 
ment for weighting the phases from these modified 
maps was proposed, allowing their combination with 
the starting IR phases. 

When the number of equivalent molecules is too 
small to have an overdetermination or when there is 
a single copy of the molecule in the asymmetric unit, 
the density modification can still be used in a statis- 
tical sense: although not fixed algebraically, a prob- 
ability law for each phase may be computed from the 
modified maps and this probability law may be com- 
bined with the IR phase probability law. Schevitz, 
Podjarmy, Zwick, Hughes & Sigler (1981), using the 
weighting scheme proposed by Bricogne (1976), 
showed that drastic improvements of a tRNA map at 
4.0/~ resolution from crystals containing 70% solvent 
are obtained by solvent flattening and by reduction 
of the densities below the solvent level in the 
molecular domain. Wang (1985) has used solvent 
flattening in the same way to solve the phase 
ambiguity from a single isomorphous replacement. 
Wang's algorithm determines automatically the 
molecular envelope from a SIR map and refines it 
progressively while the phases are improved. Leslie 
(1987) proposed a fast algorithm to find the molecular 
envelope, making use of the differences between the 
mean square deviation in the solvent domain and for 
the molecule. 

Other techniques of phase refinement have been 
proposed. Rice (1981) used the phases from an atomic 
partial model including parts for which the sequence 
had not been assigned to improve the initial MIR 
phases. In a similar way, Bhat & Blow (1982) selected 
from a noisy map the features likely to belong to the 
molecule and considered it as a partially known 
density. In both cases the combinations of the com- 
puted phase probabilities with the initial MIR ones 
allowed the building of an atomic model. 

Although a number of structures have been deter- 
mined with the help of solvent flattening, it must be 
emphasized that solvent flattening cannot by itself 
solve the phase problem. At least one good SIR 
derivative is necessary to initiate the refinement. In 
our case, i.e. methionyl-tRNA-synthetase (Met-RS), 
the classical solvent flattening process (CSF) did not 
enable us to construct the entire molecule (Zelwer, 
Risler & Brunie, 1982; Brunie, Mellot, Zelwer, Risler, 
Blanquet & Fayat, 1987). The maps that result from 
this classical process are less noisy than the MIR 
maps but also lack continuity. In the areas where the 
electron density is weaker for physical reasons and 
hard to distinguish from the solvent, the process does 
not improve the maps even with a conservative 
envelope. Furthermore, an automatic procedure may 
yield a non-conservative envelope and a biased map. 

We will show that the Sim phasing and weighting 
scheme, proposed by Bricogne when geometrical 
redundancies occur in the asymmetric unit, is not 
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relevant in the absence of such redundancies. This 
paper proposes a new way of estimating and weight- 
ing the phases obtained from density modification 
techniques. This new way of handling the phase infor- 
mation has been applied successfully to the structure 
of Met-RS. 

I. Theoretical background 

1.1. The classical solvent flattening method 

Let us call p(x) the true electron density and ps the 
value of the solvent density supposed to be constant. 
If y(x) is a mask whose value is 1 inside the molecular 
domain and 0 outside it, we have 

p ( x ) - 0  (1) 

and 

[ p ( x ) -  p J  y(x) = p(x) - m. (2) 

In reciprocal space we have 

F ( h ) M ( k - h ) =  F(h). (3) 

M(h)  is the Fourier transform (FT) of y(x) and F(h) 
the FT of p(x). p(x) and [p (x ) -p~]  have the same 
FT, except for h I = 0. 

Given a set of F 's, the solvent flattening method 
can be said to find a map whose FT fulfils the linear 
system (3) and whose moduli are equal to the 
observed ones. In fact, the M's  are weak outside a 
sphere of 10A-~, especially for hand-made envelopes. 
A convolution equation creates an overdetermination 
for the phases only if the number of terms of the 
summation is large enough. This is not the case in 
macromolecular crystallography and the phases given 
by (3) have only a statistical meaning. More precisely, 
the use of (3) in iterations like the classical ' tangent 
formula', starting with imprecise phases and weighted 
IF['s, does not increase the number of terms of the 
summation as in small-molecule crystallography at 
atomic resolution. 

If we now add the condition that the phases must 
also be compatible with one or several isomorphous 
derivatives, the constraints are stronger and 
experience shows that a unique solution can be found 
for the phases even in the case of a single isomorphous 
replacement. 

To determine the 'best' phases by combining prob- 
ability laws from independent experiments, it is 
necessary to give a weighting scheme to each phase 
solution. The Blow & Crick (1959) treatment of errors 
from isomorphous replacement gives for each reflec- 
tion a probability law based on the estimation of the 
lack of closure e(a) between the observed derivative 
structure factor and the sum of the parent structure 
factors with the computed contribution of the heavy 
atoms: 

p(a)= k exp [-e(a)2 /2E 2] (4) 

where E 2 is the variance of e and k a normalization 
constant. 

In order to allow us to combine these probabili- 
ties with the information given by partial models, 
Hendrickson & Lattman (1971) proposed an 
expansion of the exponential argument of (4) into a 
Fourier series limited to the first four terms: 

p(a) = k' exp (A cos a + B sin a + C cos 2a  

+ D sin 2a) .  (5) 

When two probabilities concerning the same ran- 
dom variable are relative to independent experiments, 
the total probability is given by the product of the 
probabilities from each experiment. Hence combin- 
ing the probabilities from different isomorphous 
derivatives can be done by adding the corresponding 
coefficients A, B, C and D. When a partial model is 
known, the probability law is given by the Sim (1959) 
formula. This probability may also be put in the form 
of expression (5) with 

C = D = O  

in this special case. 

Probability from density modification. In order to 
find a probability law corresponding to averaging of 
the densities from identical molecules and to the 
solvent flattening, Bricogne (1976) makes the assump- 
tion that the density values within the molecular 
envelope are known. Hence the structure factors com- 
puted from the modified densities are considered as 
the FT of the known part of the electron density and 
the Sire formula can be used to weight the correspond- 
ing phases: 

p(a) = k exp [X cos ( a - a l l ) ]  (6) 

with X =  2[Fol[Fc[/~,2 and aH the phase of Ft. ~2 is 
the mean value of the squared structure-factor moduli 
of the unknown atoms. In the formula proposed by 
Bricogne, Y~2 is estimated as the average ofiF2o - Fc]2[. 

The assumption that the contents of the molecular 
envelope are known has been justified in the case of 
geometrical redundancies by the fact that the contents 
of the molecular envelope have density values close 
to the true ones after a small number of refinement 
cycles. In the absence of such redundancies which 
overdetermine the phases, this assumption does not 
make sense. 

In the absence of non-crystallographic symmetry, 
the phase refinement requires IR phase probabilities 
since solvent flattening cannot by itself determine the 
phases as seen before. The combination of phase 
probabilities from different origins is critical here. 

Contrary to the usual assumptions, the density of 
the solvent area is the only one known a priori. 
Conversely, the structure factor of the envelope con- 
tents is a random variable which has to be determined 
even if an ' independent '  experiment (isomorphous 
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replacement) gives a mean value (the Fourier 
coefficient of the 'best' map). If one tries to apply the 
process described by Schevitz et al. (1981) without 
smoothing the solvent and without removing the 
densities below the solvent level, one will find the 
phases rarely changed but with all figures of merit 
close to 1. This means that the iteration process is 
not self-consistent. Another argument to change the 
weighting scheme of the method proposed by Schevitz 
and co-workers lies in the fact that the efficiency of 
solvent flattening is expected to increase with the 
volume of the solvent area (Leslie, 1987). Improper 
use of the Sim formula gives weights, however, which 
increase with the volume of the molecular domain. 

In the following sections we propose other for- 
mulas to handle the phase information from density 
modifications. 

1.2. Relationship between the phase shifts and the 
density modifications 

The initial map from MIR may be considered as 
the sum of two terms, 

Omir(X) = pl(X) "q- if(X), (7) 

Pl being the corrected density map and s r the density, 
which is considered as an error and removed from 
the map. In reciprocal space, the difference 

g(h) = [Fmi~(h)- For(h)] 

is the FT of s r. The phase shifts due to the density 
modification therefore depend exclusively on ~'. 

More generally we may consider the density Pmir 
as the sum of two terms, 

Pmir(X)-~- p(x)"~- T(X). (8) 

p is the true (unknown) electron density and r an 
error which is generally unknown except for certain 
areas of the cell. In these areas we have 

• ( x ~ )  = ~ ' (xs ) .  

In reciprocal space 

Emir(h ) = F(h) + t(h). (9) 

This is an exact relation where t(h) is unknown. If 
we replace t(h) by g(h), which is known, Emir(h) has 
to be replaced by a random variable ~(h), and we have 

F(h) = ~:(h) - g(h). (10) 

Since g(h) is the FT of st(x) which is equal to 0 for 
x ~ xs, the contribution to ~:(h) is given by the structure 
factor of the atoms and by the FT of the error r(x) 
in the molecular domain. If we assume that the ran- 
dom variable ~: follows the Wilson probability law, 

p(l£[, a) dl¢:l da  = (1/7r Z2) exp [-I¢IVL]I¢I die[ do~, 

(the variance )-'.2 being computed from <lFmi£>), the 
line of argument developed by Sim (1959) may be 

applied to our case and we obtain 

p(a)oCexp[X' cos(a-ag+rr)] (11) 

with X'=21gllFol/(IFm~r[2). We may notice that if 
Emir(h) = 0 the most probable phase given by (11) is 
the same as the most probable phase given by (6) but 
the weight of this phase is in principle much smaller. 
When the IR figure of merit differs from zero, the 
most probable phase given by (6) is the phase of the 
vector, (Fmi~-g), whereas the most probable phase 
given by (11) is the phase of ( - g ) .  

Equation (6) tends therefore to strengthen 
artificially the weight of the M IR phases. Equation 
(11) has been used to improve the MIR phases of 
Met-RS (Brunie et al., 1987). The resulting map was 
better than the one obtained by the classical method 
in the helical domain and was equivalent or less good 
in other parts of the molecule. We know now that 
the scaling between Fo and Fc is critical and should 
have been changed. This point will be discussed later. 

The assumption that ~:(h) follows the Wilson law 
is convenient but approximate. Luzzati (1955) has 
shown that since the atoms of protein crystals are not 
randomly distributed in the cell, the corresponding 
intensities do not follow a Gaussian law [his relation 
(22)]. The intensity law proposed from different 
stochastic models is the product of a Gaussian term 
with a correcting term which involves the FT of the 
atomic distribution law (i.e. the FT of the molecular 
envelope). Beyond a certain resolution (10 A typi- 
cally), this correcting term is likely to be constant and 
the Gaussian term gives a good approximation of the 
probability density of the molecular part of the struc- 
ture factor. We may also assume that the FT of the 
error -r(x) is the sum of a large number of independent 
random terms and this should keep for ~:(h) the 
behaviour of a Gaussian two-dimensional random 
variable. 

1.3. The isomorphous pseudo-derivative technique 
(IPD) 

Equation (11) does not account for the fact that 
the Fc computed from the modified maps have to be 
as close as possible to the observed structure-factor 
moduli. Relation (10) concerns the moduli as well as 
the phases. If we try to determine the phase a(h)  of 
F(h) given IF(h)l, IFmir(h)l and t(h) we are in a case 
similar to the phasing by a single isomorphous deriva- 
tive. t(h) is only approximately known, as in the early 
stages of a multiple isomorphous replacement pro- 
cess. We may therefore use g(h) instead of t(h) and 
apply the statistical treatment of the lack of closure 
e, following Blow & Crick (1959): 

p ( a )  = k exp [-e(a)2/2E 2] (12) 

with 

e(a)=l[[F(h)[exp(ia)+g(h)t-IFm~r(h)l[. (13) 
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We know that this treatment assumes that all the 
errors arise from the moduli of the derivative (IFmir[), 
although in our case the main souce of error comes 
from g(h). However we expect that, as in the 
refinement of the heavy-atom sites in the MIR pro- 
cess, the iterations consisting of alternate density 
modification and phasing steps will allow us to 
improve g(h). This expectation relies on the fact that 
the differences between the new map and the IR map 
in the molecular domain allow an extrapolation of 
st(x). Fig. 1 gives the Harker construction for our 
case. Since the IR figure of merit is always smaller 
than or equal to 1, for many reflexions the circles will 
have no intersection, and this is particularly true at 
the beginning of the refinement. In the case of a SIR, 
the 'best' phase is always the phase of - g (h ) ,  but the 
weight of this phase differs significantly from the one 
given by (11). The weight given by IPD only depends 
on the discrepancy between the computed and 
observed moduli of the 'derivative'. The weight given 
by (11)increases with the magnitudes [g(h)[ and IFol. 
When the two circles have an intersection, p(a)  
becomes bimodal and its combination with the MIR 
probability density will shift the phase mean value 
towards one of the two maxima, p(a)  has the sharpest 
shape when the two circles are tangential and when 
the two radii have the maximum difference (i.e. when 
I Fmirl = 0). During the iteration process, our knowl- 
edge olr r(x) is improved since we may extrapolate 
the known errors towards the molecular domain. The 
IPD technique is therefore able to refine more 
efficiently the initial IR phases and eventually cure 
systematic errors due to a lack of isomorphism of one 
derivative. 

For the mean square deviation E of e we take 

E2=([Fo-IFcl] 2) (14) 

Fig. I. Argand diagram of the isomorphous pseudo-derivative. The 
parent circle is given by the heavy line and its radius is [Fo[; the 
pseudo-derivative is given by the light line and its radius is [Fmir[. 
g is the 'heavy-atom' contribution computed from the known 
errors; its origin is the centre of the derivative circle and its end 
is the centre of the parent circle. For a given a, the lack of 
closure e is computed from the difference between ]Emir[ and 
Ig + IFol exp (ia) I. 

which is equivalent to 

E2=<(IF(h)÷ g(h)l- IFmir(h)l)2>. 
We may also define a phasing power, 

p w :  ((Ig(h)l~>/E~) '/~ 

and an R factor, 

R=(IFo-IFcII)/(IFol). 

(15) 

(16) 

1.4. Phase extension with IPD 

The use of non-crystallographic symmetry is not 
limited by resolution contrary to the IR phasing. 
In the absence of non-crystallographic symmetry, 
although it is always possible to evaluate the phases 
by smoothing the solvent area, these evaluated phases 
are mean values of poor quality. The IPD technique 
is also able to compute high-resolution phases. The 
examination of the maps showed an enhanced pro- 
tein-solvent contrast but without a real improvement 
of the maps at places where the interpretation was 
ambiguous. Low-resolution reflexions in the small- 
angle scattering range may also be phased from 
modified maps but with more rewarding results. These 
reflexions are directly related to the contrast between 
the solvent density and the average protein density. 
When data from this low-angle range are available, 
the corresponding phases cannot be estimated from 
solvent smoothing but from a structure-factor cal- 
culation of the contents of the envelope. Indeed 
Luzzati (1955) demonstrated that in protein crystals 
the intensities do not follow Wilson's statistics be- 
cause the distribution of the atoms is non-uniform. 
Luzzati gave a two-dimensional probability law 
p(IFI, fl)dlF[dfl which is very similar to the one pro- 
posed by Sim (1959) for partial structures. In this 
formula, the FT of the probability density of an atom 
in the cell replaces the structure factor of the partial 
atomic model in the Sim formula [expression (19), 
p. 797 of Luzzati (1955)]. The derivation of p(/3) is 
straightforward: 

p(fl) d[3= k exp [2 El [FqllFol cOs fl/~,2 ] (17) 

with /3 = ~ -  aq; F, is the structure factor of the 
atomic probability law. The molecular volume 
defined by the envelope gives us a probability law 
for the atomic distribution in the cell if we assume 
that they are uniformly distributed within this volume. 
Unlike the usual Sim formula, (17) is useless at a 
resolution higher than 10A~ since the FT of the 
molecular volume G(h) is weak beyond this reso- 
lution (Leslie, 1987). In practice, we may replace 
E~ ]Fql by the structure-factor moduli computed from 
the envelope contents. Since the electron density of 
the solvent ps only modifies the magnitudes of the 
structure factors in a first approximation, the attribu- 
tion of computed phases to the low-resolution struc- 
ture factors will reciprocally determine p.~. 
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II. The practice of the IPD technique 

II.1. The different steps of the iteration process 

Any density modification technique requires prior 
knowledge of the molecular boundaries. These boun- 
daries may be determined automatically (Wang, 1985; 
Leslie, 1987) or manually. The result of this determi- 
nation is a map whose values are 0 in the solvent 
domain and 1 in the molecular domain. For con- 
venience the file containing this mask should be writ- 
ten in an electron density map format. The cycles of 
computation including alternate density modification 
and phasing steps are similar to those described by 
Schevitz et al. (1981): (1) density modification of the 
MIR map po(X) or the map p,_~(x); (2) fast Fourier 
transform (FFT) of the modified density to obtain 
the computed structure factor F~; (3) phasing step to 
obtain new weighted Fourier coefficients; and (4) 
computation of the map p,(x) and return to step 1. 
We will now describe for each step the specific 
features of the I PD technique. 

II.2. Density modification 

(a) Positivity of the electron density. In CSF, the 
density values below the solvent level are multiplied 
with an attenuation factor (0.1 typically). For the IPD 
technique this treatment is forbidden. Indeed, in our 
case modification of the map is used to evaluate the 
error r(x) rather than to define the "known" part of 
the structure. It is especially important that features 
of the true electron density p(x) should not be con- 
sidered as belonging to r(x). For this reason, iden- 
tification of negative densities implies that the map 
should be computed on an absolute scale and the 
Fooo term included. The determination of the scale 
and of the constant Fooo makes use of the fact that 
the low-resolution reflection magnitudes (between 
and 20 A) are sensitive to the contrast between the 
average density in the molecular domain and ps. We 
also know that the average electron density of a 
hydrated protein is about 0-41 e A-3. The condition 
that the R factor for the low-resolution reflexions be 
as low as possible and that the average density must 
be close to its theoretical value in the molecular 
domain allows us to find suitable values for Fooo and 
the scale. Finding the~e values is equivalent to iden- 
tifying the negative dens!ties and the maximum con- 
trast allowed between molecular and solvent average 
densities. In practice, at the beginning of the 
'refinement the low-resolution reflexions have a figure 
of merit of 0 and the scale is arbitrary. The Fooo/V 
term is adjusted so as to put the average density of 
the molecular domain close to 0.41 e/~-3 and added 
to the MIR map. If the scale factor is underestimated, 
thg amount of removed 'negative' densities will be 
excessive and the contrast between protein and sol- 
vent overestimated. This overestimate produces in the 

following cycles a strong discrepancy between [Fo[ 
and IF~[ in the low-angle scattering range. A new scale 
factor can then be computed from these low-angle 
reflexions which reduces the amount of negative 
density. The scale may therefore be adjusted progress- 
ively. Another way of computing the absolute scale 
can be found by using the FT of the molecular 
envelope as Fc, the scale of the F 's  being proportional 
to the difference (0 .41-ps) .  

(b) Solvent smoothing. The mask corresponding to 
the molecular volume is defined by a file of logical 
values arranged like a map file. The first envelope 
has been designed by contouring the areas of density 
likely to contain meaningful features. After several 
cycles of iteration the envelope may be adjusted to 
the improved map automatically. The result of this 
adjustment is a volume whose FT has non-zero values 
at a higher resolution. Since the multiplication of the 
map by the mask is equivalent in reciprocal space to 
convoluting the F's  with the Fourier coefficients of 
the mask, the higher the resolution of the mask, the 
stronger the constraints on the phases. 

II.3. Phasing step 

(a) Phase probabilities. From Fig. 1, the probability 
for a given a value is given by (12) and (13). This 
probability density is put in the form proposed by 
Hendrickson & Lattman (1970) to allow its combina- 
tion with the MIR probability density. As seen before, 
the low-resolution reflexions (in the range oo-8/1,) 
are phased according to (6) if the MIR figure of merit 
is smaller than a preset value (0.3 typically). 

( b ) Estimation of the discrepancy between the MIR 
best map and the electron density. The structure factors 
g(h) of the known errors are given by 

g (h )=  Fm~r(h) - Fc(h). (18) 

This means that if in the first cycle the errors are 
only estimated from the solvent domain and from the 
negative values of the scaled MIR map, in the follow- 
ing cycles g(h) also includes the improvements of the 
map in the molecular domain which result from phase 
combinations from the preceding cycles. Thus, 
equation (18) allows an extrapolation of the errors 
towards the areas where they are not measured. Of 
course, the extension of the knowledge of the errors 
towards the molecular domain does not have the same 
reliability as the estimation of these errors from the 
departure of the map from known physical properties. 
The only control we have on these estimations is the 
minimization of the mean lack of closure E during 
the refinement process, or of the R factor between Fc 
and Fo. We may, however, note that this situation 
does not differ significantly from the one occurring 
when one attempts to interpret a heavy-atom deriva- 
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tive starting from a main site and looking up 
difference maps to include the weaker sites in the 
refinements. The analogy between the IPD technique 
and the heavy-atom refinement in isomorphous 
replacement is complete. 

(c) Low-resolution reflexions. As stated before 
(§ 1.4), the low-resolution reflexions (in the range 
o0-8 A), which have a figure of merit below a preset 
value, are phased according to the Sim formula (6). 

(d) Scaling between IFol and IFcl. In current prac- 
tice (Bricogne, 1976; Schevitz et al., 1981; Wang, 
1985) the scaling of the structure factors computed 
from modified maps is done assuming that they are 
similar to structure factors computed from a partial 
atomic model. According to this assumption, <IF I> 
would have to be close to (IFol) at any resolution and 
a temperature factor would have to compensate for 
the decay of the mean figure of merit with the resolu- 
tion. By contrast, for the IPD technique the MIR 
structure factors and the observed structure factors 
are considered as isomorphous pairs and the 
difference (Fmi r - Fc) represents the 'heavy-atom' con- 
tribution. The scaling between F~ and Fo must there- 
fore only include reflexions whose figures of merit 
are close to 1. Our experience has shown that the 
usual scaling results in an underestimate of the mean 
square error E and an overestimate of g(h). The maps 
computed with the weighted structure factors result- 
ing from this usual scaling associated with the IPD 
technique are damaged in the areas where the density 
is especially weak. Makowski (1986) emphasized the 
need to take into account the unphased reflexions 
(with a figure of merit of 0) for the estimation of the 
errors. This requirement is in agreement with our 
experience. 

II.4. Implementation 

The set of programs written in Fortran 77 has been 
implemented on the IBM 3090 computer of CIRCE 
(Orsay) under the MVS environment. At present the 
use of the programs is restricted to space groups 
whose centrosymmetric reflexions have either 0 or 7r 
as phase values. The different steps of a single cycle 
can be run as separate and successive jobs. The FT 
subroutines are those written by Ten Eyck (1973), all 
the map files being compatible with this set of pro- 
grams. The reflexion files are written in a '12A2' 
format, one item containing the Miller indices, a flag 
for centrosymmetric reflexions, the IFo[, the four Hen- 
drickson & Lattman coefficients, the figure of merit 
and the phase. The reflexion file used to compute the 
electron density map to be modified contains all 
measured reflexions, the phase coefficients 
(A, B, C, D) and the figure of merit (set to zero if no 
IR phase information is available). There are three 

possible items for each reflexion; the first one corre- 
sponds to the IR information, the second one to the 
information resulting from the previous cycle, and 
the third one to the FT of the modified map arranged 
in the 12A2 format. Since at the first cycle there are 
two identical items for each reflexion, the second item 
contains either the phase information from the phase 
combination program or the IR phase information if 
the reflexion has not been treated by the combination 
program. This file organization allows us to improve 
the phases by shells of increasing resolution. The 
structure factors Fc of the modified maps are put in 
the same format, sorted and merged with the initial 
file, by means of the IBM sort/merge package. 

An additional program is used to update the 
envelope from an initial mask map. This program 
requires the prior definition of a minimum density 
level and of a number of sections of the electron 
density map to be averaged. The averaging assigns a 
flag to each grid point, taking into account the values 
of the neighbouring sections for the same grid point. 
If p >pm for any of the set of sections, the flag is set 
to (1). Otherwise the flag is set to (0) outside the 
previous envelope and ( -1 )  inside it. The boundaries 
of the molecule are shifted so as to include in the 
molecular volume the maximum number of (1) pixels 
and to avoid confusion of van der Waals interspacing 
with solvent. The averaging of several sections is 
necessary to separate empty areas in the molecular 
domain from solvent areas. The refined envelope fol- 
lows the molecular contours more accurately, thus 
leading to stronger constraints on the computed 
phases [cf. relation (3)]. 

This version of the programs has been mainly used 
to set the method. In order to have a more general 
and transportable set of programs, we are modifying 
the SCALE and C O M B I N E  steps of the Wang 
algorithm to make them compatible with the IPD 
phasing. This work is being done on our local micro- 
VAX computer. A further advantage of including IPD 
phasing in existing programs lies in the automatic 
procedures to design the envelopes. 

III. Application of the IPD technique 
to the Met-RS structure 

The crystallized methionyl-tRNA-synthetase is a 
molecule of 64 000 daltons obtained by mild proteoly- 
sis of the native dimer (2×76 000; Waller, Risler, 
Monteilhet & Zelwer, 1971; Dardel, Fayat & Blan- 
quet, 1984). The space group is P21 with one molecule 
per asymmetric unit. The first model was obtained 
from multiple isomorphous replacement followed by 
a solvent flattening process according to Schevitz et 
aL (1981). The map allowed the description of the 
topology of the N-terminal domain consisting of a 
Rossmann fold with a large inclusion between strands 
C and D (Risler, Zelwer & Brunie, 1981; Zelwer et 
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Table 1. Comparison between similar significant test 
values for the initial MIR refinement, the usual 
refinement with the use of the Sim formula and the IPD 

refinement 

In i t ia l  Class ica l  I PD 

R factor 46% 26% 21% 
(m) 0.63 0.89 0-89 
Number of reflexions 16 000 17 000 21 000 
pw - -  - -  2.89 
r ratio 0.89 0.46 0.46 

al., 1982). The C-terminal domain consists of several 
a helices, the connexions of which were not given as 
certain. Areas of ill defined densities were present in 
the map and it was not clear whether these areas 
belonged to the C terminus or were parts of the 
inclusions between strands of the Rossmann fold. The 
tentative model published before the sequence was 
available did not account for the totality of the 
molecule. Cross-linking experiments done with oxi- 
dized tRNA suggested that 55 residues had to be 
included between strands D and E of the Rossmann 
fold in the N-terminal domain (Hontoudji, Blanquet 
& Lederer, 1985). Following this information a rein- 
terpretation of the maps has been undertaken. The 
present available structure appears compatible now 
with all the independently obtained biochemical and 
genetic data (Brunie et al., 1987). 

III.1. The application of the IPD technique 

The data consists of 21 000 observed moduli rep- 
resenting a complete 2.5/~ sphere. These reflexions 
have been recorded with a rotation camera except for 
the low-angle reflexions recorded with a diffrac- 
tometer. 16 000 reflexions only have been phased 
by MIR. The 5000 additional ones include 3000 
reflexions excluded from MIR because they were too 
weak on our first photographs, and 2000 reflexions 
from the cusp added later. 

The initial envelope was drawn by hand and was 
the same as the one used for the classical solvent 
flattening technique. After a preliminary set of alter- 

nate steps of density modification and phase combi- 
nation, the map looked better than with the classical 
solvent flattening technique and the envelope was 
refined using the program described above. The whole 
process was then resumed from the beginning with 
the new envelope for 14 cycles. The molecular domain 
represented 58% of the cell, the initial R factor was 
46%. The initial resolution limit was 6 A and this 
limit was extended progressively during the 14 cycles. 
Table 1 gives the values of some significant variables 
used to follow the refinement: the mean phasing 
power of the I PD, the mean figure of merit, the R 
factor, and the ratio r given by 

r (P -(P))solvent/(p2 2 = - (P))ce,,. (19) 

Further information on the refinement is given in 
Tables 2 and 3. 

The initial scale of the F's and the Fooo term put 
the zero level of the map at a midpoint between the 
mean level in the molecular domain and the minimum 
of the density. At cycle 14 the mean density was 
0.43 e/~-3 for the molecule and 0.32 e/~-3 for the 
solvent. These values are unrealistic and the figure of 
merit of the first 30 reflexions between ~ and 20 
was bad (0.63), reflecting a strong discrepancy 
between IFol and IFcl. Dividing this initial scale by 
2.2 led after four refinement cycles to a figure of merit 
of 0.70 for these reflexions and a mean difference of 
0.03 e/~ -3 between the molecule and the solvent 
areas. The corresponding displacement of the zero 
level of the map (the negative densities representing 
only 0.25 of the densities below the solvent level) 
resulted in a weaker contribution of negative densities 
to g(h). We may wonder whether the low-resolution 
reflexion moduli are reliable enough to adjust the 
scale since their measurements are affected by strong 
Lorentz and polarization corrections as well as by 
strong absorption factors. In fact, the interpretation 
of the resulting maps showed that with the previous 
scale some parts of the molecule surrounded by the 
solvent are easier to distinguish from the solvent than 
with the second one although few sharp irregularities 

Table 2. Statistics of the IPD refinement per resolution shell 

Nsi m is the n u m b e r  of  ref lexions  for  which  the M I R  phase  has  b e e n  r ep laced  by the one  g iven  by the  Sim f o r m u l a  (6). The  phase  shift  

Aa has been taken with respect to the initial MIR phase. 
Resolution (/~) 25 12.5 8"3 6.2 5"0 4.2 3"6 3.1 2.8 2.5 Total 
Number of reflexions 30 178 446 814 1295 1931 2654 3535 4517 5610 21 019 
NSi m 30 91 164 22 0 0 0 0 0 0 307 
(m) 0"70 0"90 0"94 0"90 0"90 0"93 0"91 0"90 0'89 0"88 0-90 
pw 1"5 2-1 3"2 2"5 2"6 3"3 3"2 3'2 3"0 3"1 2"9 
(As) (°) 63 45 50 43 45 46 51 57 62 72 59 

Table 3. Repartition of the reflexions per figure of merit and corresponding mean phase shift for the final IPD cycle 
m less than 0-1 0.2 0-3 0.4 0-5 0.6 0.7 0.8 0"9 1.0 
MIR 7334 488 647 871 966 1130 1443 1948 2924 3268 
IPD 60 76 104 144 199 345 704 1276 3371 14 740 
(~a)(°)  89 78 82 76 74 69 58 43 26 10 



CH. ZELWER 493 

appear in the main-chain path. At cycle 18 the R 
factor was 21%, the overall figure of merit was 0.89 
for the 21 000 reflexions lying in the 2.5 A sphere, 
and the ratio r was 0.47 against 0.88 at the beginning 
of the refinement. The final phasing power of the IPD 
was 2.9. 

Ili.2. Comparison of the maps from different methods 

Figs. 2 and 3 give comparisons between the initial 
MIR map (a), the CSF map (c) and the IPD map 
(b) for some large areas of the molecule. The MIR 
map is obviously noisy and lacks resolution. Map (c) 

t . . . .  > x 
/ 

. . . .  

(a) 

. . . .  i" il / "~ il 

(b) 

(c) 

Fig. 2. Stereo pairs of superimposed sections of the map for (a) MIR, (b) IPD and (c) CSF of an area exhibiting strand B of the fl 
sheet of the nucleotide binding domain; map (c) exhibits several sharp irregularities in the main-chain path which are not present 
in (a) and (b). Several side chains are better defined in map (b) than in map (c). Trp 221 belongs to a peptide which has been 
reinterpreted during the refinement of the atomic model. Different scales have been applied to each map so as to ensure that the 
density values vary in the same range. The superimposition of the density contours and of the atomic skeleton (corresponding to an 
R factor of  22%) has been done with the program PLUTO (Motherweil & Clegg, 1978). 
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/ . . . .  ? & _ .. t . . . .  

/ . . . . . . . .  ,-- 1 ~  

(a) 

/ / 1 ~  i / 1 ~  

(b)  

1 ~ ' ~  i _ _  - - > ~  
I I - i - ,~ 

(c) 

Fig. 3. Stereo pairs of  superimposed sections of the map for (a) MIR, (b) IPD and (c) CSF of an area exhibiting the loop connecting 
the first ~ helix to strand B and a part of the N-terminal peptide. The first residues of  the N terminus are surrounded by the solvent 
and have a weak density. Maps (b) and (c) are better resolved for the N-terminal peptide. 
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has a better contrast but numerous sharp irregularities 
which are not present in the initial MIR map are 
observed in the main-chain path. In map (b) the side 
chains are better defined than in the other ones and 
no sharp irregularities occur in the main-chain path 
for areas which are not in close contact with the 
molecular envelope. 

III.3. In terpre ta t ion  o f  a m i n i - m a p  

A mini-map at a scale of 2 . 4 m m A  -I has been 
traced on transparent sheets. This IPD mini-map is 
good enough to define a peptide chain for most of 
the structure, the density for the peptides 125-185 
and 235-285 being improved although the resolution 
is still lower than in the other parts of the structure. 

Further comparison between the IPD map and the 
refined model will be detailed when the structure is 
published in the near future. 

IV. Concluding remarks 

The IPD technique refines the phases while constrain- 
ing the map to follow some physical properties. The 
calculated moduli are constrained to be as close as 
possible to the observed ones. In this sense IPD seems 
to be more powerful in refining the phases than the 
classical refinement techniques based on the Sim for- 
mula. This technique is not restricted to solvent flat- 
tening and may be used with non-crystallographic 
symmetry. The IPD technique makes a clear separ- 
ation between the starting information and the 
unknown density, which is that of the molecular 
domain. The Blow & Crick weighting scheme has the 
additional advantage of being simple and cheap in 
computing time. Obviously the distribution law of the 
lack of closure, assuming that the errors are coming 
from the 'heavy-atom derivative' structure-factor 
moduli (here the IFmir[), is not correct since the errors 
arise in our case from g(h). It is not certain, however, 
that modification of the weighting scheme will sig- 
nificantly improve the resulting maps. Our experience 
of the IPD technique has taught us that attempts to 
minimize the mean square errors artificially or to 
increase the molecule/solvent contrast artificially by 
removing the densities below the solvent level may 
damage the maps in an unpredictable way. 

It is in principle possible to evaluate the phases at 
any resolution with the IPD technique, as with the 
other density modification methods. In the Met-RS 
case, 16 000 reflexions only were phased by isomor- 
phous replacement while we kept the 5000 additional 
ones to obtain a complete 2.5 Asphere.  It is obvious 
that solvent flattening is equivalent to a single deriva- 
tive; however, the phases estimated from solvent flat- 
tening alone lack precision. Our experience of extend- 
ing the phases below the limit where the heavy-atom 

derivatives work shows that the interpretation of the 
resulting maps is not easier than at 2.5 A resolution. 

The structure determination of the tryptic fragment 
of Met-RS was well advanced when the IPD mini-map 
was traced. It is now necessary to check the method 
on structures which have not been previously mod- 
elled at an atomic level. Since the IPD technique 
may easily be included in existing algorithms, its 
efficiency in refining the phases can be verified in the 
near future on various new examples. 

I am indebted to Dr V. Luzzati for critical and 
helpful discussions during the accomplishment of this 
work. The coordinates of the Met-RS partial model 
were kindly supplied by Dr S. Brunie (Laboratoire 
de Biochimie, Ecole Polytechnique, CNRS, 
Palaiseau) at an intermediate stage of the refinement. 
I acknowledge Dr L. Sperling for correcting the 
English version of the manuscript. The phase 
refinement was carried out at the Centre Interdisci- 
plinaire de Calcul Electronique (CIRCE) in Orsay 
and the stereo maps with the superimposed atomic 
model have been computed with the VAX 780 from 
the Laboratoire pour l'Utilisation du Rayonnement 
Electromagn6tique (LURE, Orsay). 
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